Big Social Data for Human Dynamics

Jiang Y., Li Z., Cutter S., (2019),  Social network, activity space, sentiment, and evacuation: what can social media tell us?Annals of the American Association of Geographers

Dahal, Kumar, Li Z., (2019), Spatiotemporal Topic Modeling and Sentiment Analysis of Global Climate Change Tweets, Social Network Analysis and Mining (in press)

Hu F., Li Z., Yang C., Jiang Y., (2018) A graph-based approach to detect the tourist movement pattern using social media dataCartography and Geographic Information Science. 

Jiang Y., Li Z., Ye X.,(2018), Measuring inter-city network using digital footprints from Twitter users, Proceedings of the 2nd ACM SIGSPATIAL International Workshop on PredictGIS, 11/06/2018, Seattle, Washington, USA (accepted).

Deng, C., Lin, W., Ye, X., Li, Z., Zhang, Z., Xu, G. (2018) Social media data as a proxy for hourly fine-scale electric power consumption estimation. Envrionment and Planning A: Economy and Space.

Jiang Y., Li Z., Ye X. (2018) Understanding Demographic and Socioeconomic Bias of Geotagged Twitter Users at the County LevelCartography and Geographic Information Science

Martín, Y., Li, Z., & Cutter, S. L. (2017). Leveraging Twitter to gauge evacuation compliance: spatiotemporal analysis of Hurricane Matthew. PLoS one, 12(7), e0181701.

Liu X., Huang Q., Li Z. (2017), The impact of MTUP to explore online trajectories for human mobility studiesProceedings of the 1st ACM SIGSPATIAL International Workshop on PredictGIS

Huang Q., Li Z., Li J., (2016), Mining Frequent Trajectory Patterns from Online Footprints7th ACM SIGSPATIAL International Workshop on GeoStreaming (IWGS), San Francisco, California, USA.

Articles in progress

Hu L., Li Z., Ye X., Delineating and Modelling Activity Space Using Geotagged Social Media Data, Landscape and Urban Planning (in review)

Translate »